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Abstract. The co-occurrence of macular hole (MH) and cystoid mac-
ular edema (CME) indicates the serious visual impairment in ophthal-
mology clinic. Joint segmentation and quantitative analysis of MH and
CME can greatly assist the ophthalmologists in clinical diagnosis and
treatment. Benefitting from the advancement of computer digital image
processing technology, deep learning has shown remarkable performance
in assisting doctors to diagnose diseases. In this paper, we propose a two-
stage network for the segmentation of MH and CME, the MH auxiliary
network and the joint segmentation network, in which the output of the
Linknet based auxiliary network is used as the input of the joint seg-
mentation network. The MH auxiliary network is designed to solve the
problem that the top boundary of the MH is difficult to be discriminated
by the joint segmentation network. In the joint segmentation network,
we add a mixed downsampling module to retain more fine feature infor-
mation during the downsampling. Furthermore, a new self-entropy loss
function is proposed, which can pay more attention to the hard sam-
ples and reduce the uncertainty of the network prediction. Experimental
results show that our method achieved an average Dice of 89.32% and
an average IOU of 81.42% in segmentation of MH and CME, showing
extremely competitive results.

1 Introduction

Cystoid macular edema(CME) is a common symptom that mostly occurs in reti-
nal diseases such as age-related macular degeneration (AMD), diabetic retinopa-
thy(DR), cataract, etc [10]. Macular hole(MH) is a full-thickness defect of retinal
tissue in the macular area, thereby affecting central visual acuity [4]. Benefitting
from non-invasive, radiation-free and high-resolution, optical coherence tomogra-
phy(OCT) is widely used in ophthalmic clinics [12]. Ophthalmologists can judge
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the degree of retinopathy according to the sizes of MH and CME through OCT
images, but manually quantitative analysis of CME and MH from each image
is time-consuming and labor-intensive. Therefore, the automatic CME and MH
joint segmentation can greatly assist the ophthalmologists in clinical diagnosis
and treatment.

In recent years, many methods have been proposed for the segmentation of
MH or CME, including traditional algorithms and deep learning based methods.
Zhu et al. [12] used graph cut and Adaboost classifier to improve the segmenta-
tion accuracy of CME with co-existence of MH. Wu et al. [9] combined Gaussian
mixture model and active contour model to segment CME. Wilkins et al. [8]
proposed a bilateral filter and thresholding based method to perform CME seg-
mentation.

Some deep learning based methods have also been applied for the CME
segmentation problem. Bai et al. [1] combined conditional random fields(CRF)
and fully convolutional networks(FCN) [6] to refine the results of FCN in CME
segmentation. On the basis of FCN, the U-Net [7], a more powerful and widely
used network was proposed. Girish et al. [3] applied U-Net to the segmentation of
intra-retinal cysts and achieved excellent results. To the best of our knowledge,
there are no deep learning based methods for MH segmentation or CME and
MH joint segmentation.

In this paper, we propose a two-stage encoder-decoder network for the joint
segmentation of CME and MH. Our main contribution includes: (1) A MH aux-
iliary network is proposed to segment the top boundary of the MH, which can
effectively improve the overall performance of the proposed network. (2) A mixed
downsampling module is adopted to reduce the false positives of CME segmen-
tation. (3) A self-entropy loss based loss function is proposed to improve the
performances of CME and MH segmentation.

2 Method

2.1 Overall Architecture

The overall structure of the proposed two-stage network is shown in Fig. 1, which
consists of MH auxiliary network and joint segmentation network. The original
image is processed by the MH auxiliary network to generate an auxiliary line on
the top of MH, which represents the top boundary of MH. Then the output of
the MH auxiliary network is used as the input of the joint segmentation network.
The characteristics of MH and CME lesions have high similarity in some aspects
such as intensity value. If these two kinds of lesions are segmented separately, it
is easy for the model to mistake CME as MH or MH as CME. Joint segmentation
can use their relative position information to better distinguish these two types
of lesions. Our baseline is composed of a shared encoder and two independent
decoder branches. Similar as U-Net, each block is constructed by two convolution
layers, and the number of feature channels is shown in Fig. 1(ii).
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Fig. 1. Overview of the architecture of two-stage network.

2.2 MH Auxiliary Network

When the neural network model is used to segment the MH, it is prone to
produce false positive or false negative in the top area of MH, shown as the
second image in Fig. 3. It is very difficult for the model to learn the definition
of the top boundary of MH directly from the OCT image because of the high
similarity of intensity between the inner and outer region of MH, which is shown
as the red line in Fig. 2(iii). According to the definition of top boundary of MH
in medicine, we designed a MH auxiliary network as shown in Fig. 2(i). First,
we feed the original image into a Linknet [2] based location network to find the
highest point on both sides of the MH, which is shown as white dots in Fig. 2(iii).
The location network outputs two Gaussian maps. The maximum likelihood
estimation(MLE) method is used to estimate the center point of the Gaussian
map as the predicted highest point. The auxiliary line of MH is generated by
these two location points, which will be fused with the original image and finally
sent it to the segmentation network. We will discuss different fusion options in
the following ablation experiments.

2.3 Joint Segmentation Network

The structure of the joint segmentation network is shown in Fig. 1(ii). The net-
work also adopts the classical encoder and decoder structure. Each block has
two convolution layers and the number in block represents the amount of fea-
ture channels. Different from U-Net, the joint segmentation network proposed
by us has two decoding paths and one encoding path. The outputs of the two
decoder branches correspond to MH and CME respectively. We replace max
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Fig. 2. Illustration of the MH auxiliary network. (i) Auxiliary line generator, we use
Linknet as the backbone of our location network. (ii) A, B and C represent different
fusion ways between the auxiliary line and original image. (iii) The enlarged view of
lesions.

pooling with a mixed downsampling module(MDM), and propose a new loss
function named as self- entropy(SE) loss.

MDM. Pooling is a very important operation in neural network models, which
has the functions including feature dimension reduction, network parameter
reduction, effective receptive field expansion and overfitting relief. Max pooling
preserves texture features, while average pooling preserves overall features. Max
pooling is the most widely used pooling method in neural network. Although
max pooling can effectively reduce the computation, it inevitably loses some
important features, which is disastrous for small targets such as CME, and can-
not be recovered. In order to retain more features during the downsampling
process, inspired by [5], we use a MDM that combines max pooling and average
pooling. The MDM can be summarized as follows:

FH = α · favg(FL) + β · fmax(FL) (1)

Where FL means the low level features, while the FH means the high level
features. favg denotes the average pooling operation and fmax denotes the max
pooling operation. α and β are the weights of two pooling methods respectively,
which are both set as 1 in this paper.
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SE. In order to enhance the generalization of the network, we propose a joint loss
function, which is composed of binary cross entropy (BCE) loss, Dice loss and SE
loss. The motivation of the SE loss function can be summarized as follows. First,
when designing the loss function, we tend to narrow the distribution between
the predicted image and the ground truth, but often ignore the constraint on
the prediction image of the network. For a label, its entropy is 0, while for the
prediction image, its entropy is not certain. Second, similar to focal loss for the
description of hard samples, the SE loss can automatically pay more attention to
those hard samples, because according to the definition of SE loss, the closer the
predicted value is to 0.5, the higher is the loss. Dice loss can effectively alleviate
the problem of data imbalance in image segmentation, which is beneficial to CME
segmentation. But Dice loss makes the training of the model unstable, which will
be relieved by the addition of BCE loss. The joint loss can be expressed as:

Ljoint = w0LDice + w1LBCE + w2LSE

= w0

(
1 − 2

∑C
i=1 gi × pi∑C

i=1 gi + pi

)
− w1

[
1

C

∑C

i=1
gi log pi + (1 − gi) log (1 − pi)

]

− w2

[
1

C

∑C

i=1
pi log pi + (1 − pi) log (1 − pi)

]
(2)

Where w0, w1 and w2 are weights of these three loss functions respectively, which
are all set as 1 in our experiments. g ∈ {0, 1} is the ground truth, and p ∈ [0, 1]
is the predicted probability. C is the sum of the pixels of the output results.

3 Experimental Results

3.1 Dataset, Evaluation Metrics and Implementation Details

The collection and analysis of image data were approved by the cooperative
hospital and adhered to the tenets of the Declaration of Helsinki. Because of
its retrospective nature, informed consent was not required from subjects. 240
images from 20 subjects (Topcon OCT-2000, radial scan model) were acquired
as our experimental dataset. The corresponding ground truth were all annotated
by professional ophthalmologists. It should be pointed out that the medical sig-
nificance of this paper is to help doctors find the relationship between MH and
CME, so there will be no case without MH. In order to make the experiment
more representative, we split data into training and test set according to the
subject and the strategy of 3-fold cross validation is adopted. All the experi-
mental results are the average of the 3-fold cross validation results. The original
image size is 1024×885, we resize to 512×448. For data augmentation, we apply
a random horizontal flip, random vertical flip and random rotation between 0
and 45 degrees in our dataset. During training, batch size is set to 6 and the poly
learning rate scheduling is adopted, decay coefficient is 0.9. The initial learning
rate is 0.01 and 60 epochs are trained per fold. All the models are based on the
pytorch framework and a NVIDIA GeForce RTX 2080Ti with 11 GB memory.
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The evaluation metrics include Intersection-over-Union (IoU), Dice, Accuracy
(Acc), Sensitivity (Sen) and Specificity(Spec) are adopted, among which, IoU is
regarded as the most important evaluation metric. The epoch of all other metrics
is the same as the epoch corresponding to the maximum IoU.

3.2 Ablation Experiments

MH Auxiliary Network. For the MH auxiliary network, we not only per-
form ablation experiments, but also discuss the fusion methods. We design three
methods to fuse the original image and the auxiliary line (shown in Fig. 2(ii)).
In scheme A, we concatenate the auxiliary line and the original image in the
channel dimension, while in scheme C, these two images are directly merged
into one image. In solution B, we concatenate the original image and the image
generated by scheme C.

Table 1. The performance comparison of different fusion methods in MH segmentation

Methods IoU(%) Dice(%) Acc(%) Sen(%) Spec(%)

Baseline MH 86.04 92.36 99.70 93.26 99.83

A MH 88.00 93.50 99.75 91.00 99.92

B MH 88.72 93.92 99.77 93.37 99.90

C MH 89.36 94.30 99.79 93.26 99.91

The experimental results show that no matter which kind of fusion method
is used, it can greatly improve the performance of MH segmentation (shown in
Table 1). Among them, scheme C is the best, which can improve about 3.3%
in IoU compared with the baseline. The visualization of experimental results in
Fig. 3 show that the auxiliary network can significantly improve the segmentation
performance of the top boundary of MH(indicated by white arrows).

MDM and SE. The detailed ablation experiment results of MDM and SE loss
function are presented in Table 2. As can be seen from Table 2, the addition of
MDM and SE loss function significantly improves the segmentation performance
of CME and improves the segmentation of MH relatively small, which is in line
with our idea. CME lesions have a large number of hard samples with high
degree of uncertainty due to the characteristics of big differences in size and
spatial distribution. In the downsampling process of the network, MDM helps
to retain more feature information about small CME lesions, while the SE loss
can pay more attention to hard samples. For IoU index, the addition of MDM
and SE loss improves by 1.26% and 1.18% in CME segmentation, respectively.
As shown in Fig. 3(green arrow), MDM and SE loss can effectively reduce the
false positives of CME.
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Fig. 3. Examples results of ablation experiments. From left to right: original image,
baseline, baseline+MH auxiliary network, baseline+MH auxiliary network+MDM,
baseline+ MH auxiliary network +MDM+SE. Magenta, red and blue represent the
true positive, false positive and false negative for MH, while yellow, green and cyan
represent true positive, false positive and false negative for CME. (Color figure online)

3.3 Comparison Experiments

The details of the comparison experiments are shown in Table 2, where Aux
represents the MH auxiliary network. As can be seen from Table 2, the proposed
two-stage method achieves significant improvements in IoU, Dice, accuracy and

Table 2. The performance of different segmentation models on MH and CME.

Methods IoU(%) Dice(%) Acc(%) Sen(%) Spec(%)

FCN8s [6] CME 39.47 54.22 99.35 52.49 99.71

MH 74.03 84.32 99.47 80.00 99.84

AVG 56.75 69.27 99.41 66.24 99.78

U-Net [7] CME 63.10 76.54 99.57 83.00 99.70

MH 78.96 87.87 99.53 85.86 99.82

AVG 71.03 82.21 99.55 84.43 99.76

U-Net++ [11] CME 70.95 82.59 99.70 86.26 99.81

MH 88.41 93.78 99.75 94.50 99.86

AVG 79.68 88.19 99.72 90.38 99.83

Baseline CME 70.20 82.05 99.68 88.15 99.78

MH 86.04 92.36 99.70 93.26 99.83

AVG 78.12 87.32 99.69 90.67 99.80

Baseline+Aux CME 70.53 82.31 99.69 87.09 99.80

MH 89.36 94.30 99.79 93.26 99.91

AVG 79.95 88.31 99.74 90.17 99.86

Baseline+Aux+MDM CME 71.79 83.22 99.71 90.67 99.81

MH 89.49 94.36 99.78 93.33 99.92

AVG 80.64 88.79 99.75 90.33 99.86

Baseline+Aux+MDM+SE CME 72.97 84.06 99.73 86.30 99.84

MH 89.87 94.59 99.79 93.96 99.91

AVG 81.42 89.32 99.76 90.13 99.87

CME ONLY 69.66 81.60 99.67 86.55 99.78

MH ONLY 83.81 90.93 99.66 87.06 99.92
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(a) image (b) FCN8s (c) U-Net (d) U-Net++ (e) Ours

Fig. 4. MH and CME segmentation results with different models. Magenta, red and
blue represent the true positive, false positive and false negative of MH respectively,
while yellow, green and cyan represent the true positive, false positive and false negative
of CME respectively. (Color figure online)

specificity compared with other models, such as FCN8s, U-Net and U-Net++
[11], which are popular in medical image segmentation.

Compared with U-Net++, our method improves average IoU by 1.74% and
Dice by 1.13% respectively. We use the best model (Baseline+Aux+MDM+SE)
to segment MH and CME separately. The corresponding experimental results
prove the necessity of joint segmentation. For the sake of fairness, all models
were trained and tested under the same set of hyperparameters.

Figure 4 shows the MH and CME segmentation results with different meth-
ods. It is obvious that our method achieves an impressive segmentation perfor-
mance. For those models that have not been preprocessed by the MH auxiliary
network, they are easy to produce serious false positives or false negatives in the
top boundary of the MH, which indicates that the MH Auxiliary network plays
an important role in MH segmentation. The addition of the MDM and SE loss
effectively improves the segmentation performance on the hard CME samples.
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4 Conclusion

In this paper, we propose a new two-stage encoder-decoder network for the joint
segmentation of MH and CME in retinal OCT images. The overall network con-
sists of two parts, the MH auxiliary network and the joint segmentation network.
The MH auxiliary network is used as a pre-processing to help the segmentation
network determine the top boundary of the MH. In the joint segmentation net-
work, MDM can effectively retain more fine features, which is beneficial to the
segmentation of CME. The SE loss function can automatically pay more atten-
tion to the hard samples and reduce the uncertainty of the network prediction.
Experiment results show that the proposed network has compelling performance
and great potential in the segmentation of MH and CME.

References

1. Bai, F., Marques, M.J., Gibson, S.J.: Cystoid macular edema segmentation of opti-
cal coherence tomography images using fully convolutional neural networks and
fully connected crfs. arXiv preprint arXiv:1709.05324 (2017)

2. Chaurasia, A., Culurciello, E.: Linknet: exploiting encoder representations for effi-
cient semantic segmentation. In: 2017 IEEE Visual Communications and Image
Processing (VCIP), pp. 1–4 IEEE (2017)

3. Girish, G., Thakur, B., Chowdhury, S.R., Kothari, A.R., Rajan, J.: Segmentation
of intra-retinal cysts from optical coherence tomography images using a fully con-
volutional neural network model. IEEE J. Biomed. Health Inform. 23(1), 296–304
(2018)

4. Ho, A.C., Guyer, D.R., Fine, S.L.: Macular hole. Surv. Ophthalmol. 42(5), 393–416
(1998)

5. Lee, C.Y., Gallagher, P., Tu, Z.: Generalizing pooling functions in cnns: mixed,
gated, and tree. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 863–875 (2017)

6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

7. Ronneberger, Olaf: Invited talk: U-net convolutional networks for biomedical image
segmentation. Bildverarbeitung für die Medizin 2017. I, pp. 3–3. Springer, Heidel-
berg (2017). https://doi.org/10.1007/978-3-662-54345-0 3

8. Wilkins, G.R., Houghton, O.M., Oldenburg, A.L.: Automated segmentation of
intraretinal cystoid fluid in optical coherence tomography. IEEE Trans. Biomed.
Eng. 59(4), 1109–1114 (2012)

9. Wu, J., Niu, S., Chen, Q., Fan, W., Yuan, S., Li, D.: Automated segmentation
of intraretinal cystoid macular edema based on gaussian mixture model. J. Innov.
Opt. Health Sci. 13(1), 1950020 (2019)

10. Zhang, L., Zhu, W., Shi, F., Chen, H., Chen, X.: Automated segmentation of
intraretinal cystoid macular edema for retinal 3d oct images with macular hole.
In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.
1494–1497 IEEE (2015)

http://arxiv.org/abs/1709.05324
https://doi.org/10.1007/978-3-662-54345-0_3


744 L. Ye et al.

11. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: a nested
u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.)
DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00889-5 1

12. Zhu, W., et al.: Automated framework for intraretinal cystoid macular edema seg-
mentation in three-dimensional optical coherence tomography images with macular
hole. J. Biomed. Opt. 22(7), 076014 (2017)

https://doi.org/10.1007/978-3-030-00889-5_1

